Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 陳靜君 | zh_TW |
dc.contributor.author | Ching-Chun Chen | en_US |
dc.date.accessioned | 2023-02-20T08:25:10Z | - |
dc.date.available | 2023-02-20T08:25:10Z | - |
dc.date.issued | 2023-01 | en_US |
dc.identifier.issn | 1680-8428 | en_US |
dc.identifier.uri | https://ccis.dcat.nycu.edu.tw/web/backissues/backissues_list_in.jsp?lang=tw&pp_id=PP1675170369823&left_code=bl | en_US |
dc.identifier.uri | http://dx.doi.org/10.29843/jccis.202301_(44).0002 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/159850 | - |
dc.description.abstract | 當面對即時通訊軟體的好友傳了大量和自己立場不同的訊息,人們如何因應政治意見衝突?為探討人們在即時通訊軟體面對政治不一致所採取的回應策略以及其背後動機,本研究整合表達-迴避策略和激進-保守策略,發展即時通訊軟體政治不一致回應策略,並採用調節焦點理論,以2022年台灣網路報告的市話調查資料作為分析基礎(N=517),透過多項式羅吉斯迴歸分析,檢視促進焦點與預防焦點動機如何影響人們採取不同的回應策略。主要研究發現有兩個:第一,近八成台灣民眾在即時通訊軟體中最常採取保守迴避策略,依序是保守表達策略(佔8.3%)、激進表達策略(佔7.7%)與激進迴避策略(6.5%);第二,促進焦點所主導的民眾偏好採取激進表達策略(如反駁對方)與激進迴避策略(如封鎖、隱藏訊息、刪除好友等),而預防焦點所主導的民眾傾向採取保守表達策略(如正面回覆)與保守迴避策略(如不理會)。在理論上有兩大貢獻:第一,提出即時通訊軟體政治不一致回應策略,可充實沉默螺旋理論、認知不和諧理論、人際衝突處理理論的內涵;其次,將調節焦點理論應用於政治傳播領域,擴充理論應用範疇。 | zh_TW |
dc.description.abstract | How do people respond to political disagreement when they encounter inconsistent political information shared by friends on instant messaging apps? The current study proposes a quadripartite model of responding strategies to political disagreement on instant messaging apps based on two orthogonal dimensions-expressive vs. avoidant and aggressive vs. conservative. Using data from 2022 Taiwan Internet Report (N = 517), the current study examines how promotion focus and prevention focus influence individuals' adoption of responding strategies based on regulatory focus theory through multinomial logistic regression analysis. The results show that approximately eighty percentage of Taiwanese prefer to adopt conservative-avoidant strategies, followed by conservative-expressive strategies (8.3%), aggressive-expressive strategies (7.7%), and aggressive-avoidant strategies (6.5%). Moreover, our findings reveal that promotion-focused individuals are more likely to adopt aggressive-expressive strategies (e.g., refute others) and aggressive-avoidant strategies (e.g., block, hide message, and unfriending), whereas prevention-focused individuals tend to adopt conservative-expressive strategies (e.g., express supporting opinions) and conservative-avoidant strategies (e.g., ignorance). There are two theoretical contributions. First, the study proposes responding strategies to political disagreement by integrating spiral of silence theory, cognitive dissonance theory, and interpersonal conflict management theory. Second, the application of regulatory focus theory to political communication broadens the research on regulatory focus. | en_US |
dc.language.iso | zh_TW | en_US |
dc.publisher | 國立陽明交通大學傳播與科技學系 | zh_TW |
dc.publisher | 台灣資訊社會研究學會 | zh_TW |
dc.publisher | Department of Communication & Technology at National Yang Ming Chiao Tung University | en_US |
dc.publisher | Taiwan Academy for Information Society. | en_US |
dc.subject | 台灣網路調查 | zh_TW |
dc.subject | 即時通訊軟體 | zh_TW |
dc.subject | 政治不一致 | zh_TW |
dc.subject | 調節焦點理論 | zh_TW |
dc.subject | Taiwan Internet Report | en_US |
dc.subject | instant messaging apps | en_US |
dc.subject | political disagreement | en_US |
dc.subject | regulatory focus theory | en_US |
dc.title | 從調節焦點理論檢視人們面對即時通訊軟體政治不一致的回應策略 | zh_TW |
dc.title | Examining the Responding Strategies to Political Disagreement on Instant Messaging Apps: A Perspective of Regulatory Focus Theory | en_US |
dc.type | Campus Publications | en_US |
dc.identifier.doi | 10.29843/jccis.202301_(44).0002 | en_US |
dc.identifier.journal | 資訊社會研究 | zh_TW |
dc.identifier.journal | The Journal of Information Society | en_US |
dc.citation.issue | 44 | en_US |
dc.citation.spage | 27 | en_US |
dc.citation.epage | 69 | en_US |
Appears in Collections: | Journal of Cyber Culture and Information Society |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.