Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Chien-Liangen_US
dc.contributor.authorHsaio, Wen-Hoaren_US
dc.contributor.authorLee, Chia-Hoangen_US
dc.contributor.authorLu, Gen-Chien_US
dc.contributor.authorJou, Emeryen_US
dc.date.accessioned2014-12-08T15:22:37Z-
dc.date.available2014-12-08T15:22:37Z-
dc.date.issued2012-05-01en_US
dc.identifier.issn1094-6977en_US
dc.identifier.urihttp://hdl.handle.net/11536/16001-
dc.description.abstractIn this paper, we design and develop a movie-rating and review-summarization system in a mobile environment. The movie-rating information is based on the sentiment-classification result. The condensed descriptions of movie reviews are generated from the feature-based summarization. We propose a novel approach based on latent semantic analysis (LSA) to identify product features. Furthermore, we find away to reduce the size of summary based on the product features obtained from LSA. We consider both sentiment-classification accuracy and system response time to design the system. The rating and review-summarization system can be extended to other product-review domains easily.en_US
dc.language.isoen_USen_US
dc.subjectFeature extractionen_US
dc.subjectnatural language processing (NLP)en_US
dc.subjecttext analysisen_US
dc.subjecttext miningen_US
dc.titleMovie Rating and Review Summarization in Mobile Environmenten_US
dc.typeArticleen_US
dc.identifier.journalIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWSen_US
dc.citation.volume42en_US
dc.citation.issue3en_US
dc.citation.epage397en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000303069100010-
dc.citation.woscount7-
Appears in Collections:Articles


Files in This Item:

  1. 000303069100010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.