完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Chun-Lingen_US
dc.contributor.authorShaw, Fu-Zenen_US
dc.contributor.authorYoung, Kuu-Youngen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorJung, Tzyy-Pingen_US
dc.date.accessioned2014-12-08T15:22:38Z-
dc.date.available2014-12-08T15:22:38Z-
dc.date.issued2012-05-01en_US
dc.identifier.issn1053-8119en_US
dc.identifier.urihttp://hdl.handle.net/11536/16002-
dc.description.abstractThis study investigates the temporal brain dynamics associated with haptic feedback in a visuomotor tracking task. Haptic feedback with deviation-related forces was used throughout tracking experiments in which subjects' behavioral responses and electroencephalogram (EEG) data were simultaneously measured. Independent component analysis was employed to decompose the acquired EEG signals into temporally independent time courses arising from distinct brain sources. Clustering analysis was used to extract independent components that were comparable across participants. The resultant independent brain processes were further analyzed via time-frequency analysis (event-related spectral perturbation) and event-related coherence (ERCOH) to contrast brain activity during tracking experiments with or without haptic feedback. Across subjects, in epochs with haptic feedback, components with equivalent dipoles in or near the right motor region exhibited greater alpha band power suppression. Components with equivalent dipoles in or near the left frontal, central, left motor, right motor, and parietal regions exhibited greater beta-band power suppression, while components with equivalent dipoles in or near the left frontal, left motor, and right motor regions showed greater gamma-band power suppression relative to non-haptic conditions. In contrast, the right occipital component cluster exhibited less beta-band power suppression in epochs with haptic feedback compared to non-haptic conditions. The results of ERCOH analysis of the six component clusters showed that there were significant increases in coherence between different brain networks in response to haptic feedback relative to the coherence observed when haptic feedback was not present. The results of this study provide novel insight into the effects of haptic feedback on the brain and may aid the development of new tools to facilitate the learning of motor skills. (C) 2012 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectVisuomotor tracking tasken_US
dc.subjectElectroencephalogram (EEG)en_US
dc.subjectHaptic feedbacken_US
dc.subjectIndependent component analysis (ICA)en_US
dc.subjectTime-frequency analysisen_US
dc.subjectEvent-related coherence (ERCOH)en_US
dc.titleEEG correlates of haptic feedback in a visuomotor tracking tasken_US
dc.typeArticleen_US
dc.identifier.journalNEUROIMAGEen_US
dc.citation.volume60en_US
dc.citation.issue4en_US
dc.citation.epage2258en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000302926600033-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000302926600033.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。