完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Mei-Lingen_US
dc.contributor.authorHung, Yung-Hsiangen_US
dc.contributor.authorLee, Wen-Mingen_US
dc.contributor.authorLi, R. K.en_US
dc.contributor.authorWang, Tzu-Haoen_US
dc.date.accessioned2014-12-08T15:22:43Z-
dc.date.available2014-12-08T15:22:43Z-
dc.date.issued2012-04-01en_US
dc.identifier.issn0148-5598en_US
dc.identifier.urihttp://hdl.handle.net/11536/16050-
dc.description.abstractBreast cancer is a common to females world-wide. Today, technological advancements in cancer treatment innovations have increased the survival rates. Many theoretical and experimental studies have shown that a multiple classifier system is an effective technique for reducing prediction errors. This study compared the particle swarm optimizer (PSO) based artificial neural network (ANN), the adaptive neuro-fuzzy inference system (ANFIS), and a case-based reasoning (CBR) classifier with a logistic regression model and decision tree model. It also applied three classification techniques to the Mammographic Mass Data Set, and measured its improvements in accuracy and classification errors. The experimental results showed that, the best CBR-based classification accuracy is 83.60%, and the classification accuracies of the PSO-based ANN classifier and ANFIS are 91.10% and 92.80%, respectively.en_US
dc.language.isoen_USen_US
dc.subjectCase-based reasoningen_US
dc.subjectParticle swarm optimizeren_US
dc.subjectANFISen_US
dc.subjectBreast canceren_US
dc.titleUsage of Case-Based Reasoning, Neural Network and Adaptive Neuro-Fuzzy Inference System Classification Techniques in Breast Cancer Dataset Classification Diagnosisen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF MEDICAL SYSTEMSen_US
dc.citation.volume36en_US
dc.citation.issue2en_US
dc.citation.epage407en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000303825500006-
dc.citation.woscount10-
顯示於類別:期刊論文


文件中的檔案:

  1. 000303825500006.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。