Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Chi-Kunen_US
dc.contributor.authorWong, Yau-Shuen_US
dc.contributor.authorWu, Kung-Chienen_US
dc.date.accessioned2014-12-08T15:22:55Z-
dc.date.available2014-12-08T15:22:55Z-
dc.date.issued2011en_US
dc.identifier.issn1340-5705en_US
dc.identifier.urihttp://hdl.handle.net/11536/16159-
dc.description.abstractThe zero Debye length asymptotic of the Schrodinger-Poisson system in Coulomb gauge for ill-prepared initial data is studied. We prove that when the scaled Debye length lambda -> 0, the current density defined by the solution of the Schrodinger-Poisson system in the Coulomb gauge converges to the solution of the rotating incompressible Euler equation plus a fast singular oscillating gradient vector field.en_US
dc.language.isoen_USen_US
dc.subjectSchrodinger-Poisson systemen_US
dc.subjectCoulomb gaugeen_US
dc.subjectrotating incompressible Euler equationsen_US
dc.subjectquasi-neutral limiten_US
dc.titleQuasineutral Limit of the Schrodinger-Poisson System in Coulomb Gaugeen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYOen_US
dc.citation.volume18en_US
dc.citation.issue4en_US
dc.citation.epage465en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.department數學建模與科學計算所(含中心)zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.contributor.departmentGraduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000302756500004-
dc.citation.woscount0-
Appears in Collections:Articles