Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lin, Chi-Kun | en_US |
dc.contributor.author | Wong, Yau-Shu | en_US |
dc.contributor.author | Wu, Kung-Chien | en_US |
dc.date.accessioned | 2014-12-08T15:22:55Z | - |
dc.date.available | 2014-12-08T15:22:55Z | - |
dc.date.issued | 2011 | en_US |
dc.identifier.issn | 1340-5705 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/16159 | - |
dc.description.abstract | The zero Debye length asymptotic of the Schrodinger-Poisson system in Coulomb gauge for ill-prepared initial data is studied. We prove that when the scaled Debye length lambda -> 0, the current density defined by the solution of the Schrodinger-Poisson system in the Coulomb gauge converges to the solution of the rotating incompressible Euler equation plus a fast singular oscillating gradient vector field. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Schrodinger-Poisson system | en_US |
dc.subject | Coulomb gauge | en_US |
dc.subject | rotating incompressible Euler equations | en_US |
dc.subject | quasi-neutral limit | en_US |
dc.title | Quasineutral Limit of the Schrodinger-Poisson System in Coulomb Gauge | en_US |
dc.type | Article | en_US |
dc.identifier.journal | JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO | en_US |
dc.citation.volume | 18 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.epage | 465 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | 數學建模與科學計算所(含中心) | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.contributor.department | Graduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000302756500004 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |