Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Tsung-Hanen_US
dc.contributor.authorKung, Tzu-Liangen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:22:55Z-
dc.date.available2014-12-08T15:22:55Z-
dc.date.issued2009en_US
dc.identifier.isbn978-960-474-041-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/16160-
dc.description.abstractA bipartite graph is hamiltonian laceable if there exists a hamiltonian path between any two vertices that are in different partite sets. A hamiltonian laceable graph G is said to be hyper-hamiltonian laceable if, for any vertex v of G, there exists a hamiltonian path of G - {v} joining any two vertices that are located in the same partite set different from that of v. In this paper, we further improve the hyper-hamiltonian laceability of hypercubes by showing that, for any two vertices x, y from one partite set of Q(n), n >= 4, and any vertex w from the other partite set, there exists a hamiltonian path H of Q(n) - {w} joining x to y such that d(H)(X, Z) = l for any vertex z is an element of V(Q(n)) - {x, y, w} and for every integer l satisfying both d(Qn) (x, z) <= l <= 2(n) - 2 - d(Qn) (z, y) and 2 vertical bar(l - d(Qn) (x, z)). As a consequence, many attractive properties of hypercubes follow directly from our result.en_US
dc.language.isoen_USen_US
dc.subjectPath embeddingen_US
dc.subjectHamiltonian laceableen_US
dc.subjectHyper-hamiltonian laceableen_US
dc.subjectInterconnection networken_US
dc.subjectHypercubeen_US
dc.titleOn the Enhanced Hyper-hamiltonian Laceability of Hypercubesen_US
dc.typeProceedings Paperen_US
dc.identifier.journalCEA'09: PROCEEDINGS OF THE 3RD WSEAS INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATIONSen_US
dc.citation.spage62en_US
dc.citation.epage67en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000263151900009-
Appears in Collections:Conferences Paper