Full metadata record
DC FieldValueLanguage
dc.contributor.authorYap, HPen_US
dc.contributor.authorChen, BLen_US
dc.contributor.authorFu, HLen_US
dc.date.accessioned2014-12-08T15:03:03Z-
dc.date.available2014-12-08T15:03:03Z-
dc.date.issued1995-12-01en_US
dc.identifier.issn0024-6107en_US
dc.identifier.urihttp://hdl.handle.net/11536/1632-
dc.description.abstractLet G be a graph of order 2n+1 having maximum degree 2n-1. We prove that the total chromatic number of G is 2n if and only if e(G-w) + alpha'(G-w) greater than or equal to n, where w is a vertex of minimum degree in G, G-w is the complement of G-w, e(G-w) is the size of G-w, and alpha'(G-w) is the edge independence number of G-w.en_US
dc.language.isoen_USen_US
dc.titleTotal chromatic number of graphs of order 2n+1 having maximum degree 2n-1en_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIESen_US
dc.citation.volume52en_US
dc.citation.issueen_US
dc.citation.spage434en_US
dc.citation.epage446en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1995TX52900002-
dc.citation.woscount2-
Appears in Collections:Articles