Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Dong-Linen_US
dc.contributor.authorPrasad, Mukeshen_US
dc.contributor.authorHsu, Sheng-Chihen_US
dc.contributor.authorHong, Chao-Tingen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:23:23Z-
dc.date.available2014-12-08T15:23:23Z-
dc.date.issued2012en_US
dc.identifier.issn1687-6180en_US
dc.identifier.urihttp://hdl.handle.net/11536/16381-
dc.identifier.urihttp://dx.doi.org/92en_US
dc.description.abstractThis study presents an appearance-based face recognition scheme called the nonparametric-weighted Fisherfaces (NW-Fisherfaces). Pixels in a facial image are considered as coordinates in a high-dimensional space and are transformed into a face subspace for analysis by using nonparametric-weighted feature extraction (NWFE). According to previous studies of hyperspectral image classification, NWFE is a powerful tool for extracting hyperspectral image features. The Fisherfaces method maximizes the ratio of between-class scatter to that of within-class scatter. In this study, the proposed NW-Fisherfaces weighted the between-class scatter to emphasize the boundary structure of the transformed face subspace and, therefore, enhances the separability for different persons' face. The proposed NW-Fisherfaces was compared with Orthogonal Laplacianfaces, Eigenfaces, Fisherfaces, direct linear discriminant analysis, and null space linear discriminant analysis methods for tests on five facial databases. Experimental results showed that the proposed approach outperforms other feature extraction methods for most databases.en_US
dc.language.isoen_USen_US
dc.subjectappearance-based visionen_US
dc.subjectface recognitionen_US
dc.subjectnonparametric-weighted feature extraction (NWFE)en_US
dc.titleFace recognition using nonparametric-weighted Fisherfacesen_US
dc.typeArticleen_US
dc.identifier.doi92en_US
dc.identifier.journalEURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSINGen_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000304304800001-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000304304800001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.