Full metadata record
DC FieldValueLanguage
dc.contributor.authorEmura, Takeshien_US
dc.contributor.authorWang, Weijingen_US
dc.date.accessioned2014-12-08T15:23:26Z-
dc.date.available2014-12-08T15:23:26Z-
dc.date.issued2012-09-01en_US
dc.identifier.issn0047-259Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/16412-
dc.description.abstractTruncation occurs when the variable of interest can be observed only if its value satisfies certain selection criteria. Most existing methods for analyzing such data critically rely on the assumption that the truncation variable is quasi-independent of the variable of interest. In this article, the authors propose a likelihood-based inference approach under the assumption that the dependence structure of the two variables follows a general form of copula model. They develop a model selection method for choosing the best-fitted copula among a broad class of model alternatives, and they derive large-sample properties of the proposed estimators, including the inverse Fisher information matrix. The treatment of ties is also discussed. They apply their methods to the analysis of a transfusion-related AIDS data set and compare the results with existing methods. Simulation results are also provided to evaluate the finite-sample performances of all the competing methods. (C) 2012 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectArchimedean copulaen_US
dc.subjectLifetime dataen_US
dc.subjectModel selectionen_US
dc.subjectNonparametric maximum likelihooden_US
dc.subjectTruncationen_US
dc.subjectQuasi-independenceen_US
dc.subjectWeak convergenceen_US
dc.titleNonparametric maximum likelihood estimation for dependent truncation data based on copulasen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF MULTIVARIATE ANALYSISen_US
dc.citation.volume110en_US
dc.citation.issueen_US
dc.citation.epage171en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000305817500013-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000305817500013.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.