完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiang, Yu-Mingen_US
dc.contributor.authorShih, Sheng-Wenen_US
dc.contributor.authorShih, Arthur Chun-Chiehen_US
dc.contributor.authorLiao, Hong-Yuan Marken_US
dc.contributor.authorLin, Cheng-Chungen_US
dc.date.accessioned2014-12-08T15:23:31Z-
dc.date.available2014-12-08T15:23:31Z-
dc.date.issued2009en_US
dc.identifier.isbn978-1-4244-3827-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/16445-
dc.description.abstractIn this paper, we propose a framework for unsupervised analysis of human behavior based on manifold learning. First, a pairwise human posture distance matrix is calculated from a training action sequence. Then, the isometric feature mapping (Isomap) algorithm is applied to construct a low-dimensional structure from the distance matrix. The data points in the Isomap space are consequently represented as a time-series of low-dimensional points. A temporal segmentation technique is then applied to segment the time series into subseries corresponding to atomic actions. Next, a dynamic time warping (DTW) approach is applied for clustering atomic action sequences. Finally, we use the clustering results to learn and classify atomic actions using the nearest neighbor rule. Experiments conducted on real data demonstrate the efficacy of the proposed method.en_US
dc.language.isoen_USen_US
dc.titleUnsupervised Analysis of Human Behavior Based on Manifold Learningen_US
dc.typeProceedings Paperen_US
dc.identifier.journalISCAS: 2009 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-5en_US
dc.citation.spage2605en_US
dc.citation.epage2608en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000275929801338-
顯示於類別:會議論文