完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLai, Yu-Chunen_US
dc.contributor.authorLiao, Hong-Yuan Marken_US
dc.contributor.authorLin, Cheng-Chungen_US
dc.contributor.authorChen, Jian-Renen_US
dc.contributor.authorLuo, Y. -F. Peteren_US
dc.date.accessioned2014-12-08T15:23:43Z-
dc.date.available2014-12-08T15:23:43Z-
dc.date.issued2009en_US
dc.identifier.isbn978-1-4244-3827-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/16544-
dc.description.abstractIn this paper, we propose a local feature-based human motion analysis framework Instead of using traditional analysis methods to characterize the global structure of human motion, we extract features directly from local regions that contain motion. To implement the above concept, we adopt the rules of visual attention theory, which assert that a human motion can be described simply by a set of local features comprised of spatial relationships rather than human postures. We select two kinds of features to represent the local variation of a human motion. First, we extract the long-term movement trend of the motion. The second feature is actually a set of rough features derived by sampling multi-scale moving edges. The two types of features are considered together during the recognition process. Our experiments demonstrate that the proposed approach can achieve very good recognition results.en_US
dc.language.isoen_USen_US
dc.titleA Local Feature-based Human Motion Recognition Frameworken_US
dc.typeProceedings Paperen_US
dc.identifier.journalISCAS: 2009 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-5en_US
dc.citation.spage722en_US
dc.citation.epage725en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000275929800181-
顯示於類別:會議論文