Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yu, Chi-Jer | en_US |
dc.contributor.author | Liu, Chii-Tung | en_US |
dc.date.accessioned | 2014-12-08T15:23:56Z | - |
dc.date.available | 2014-12-08T15:23:56Z | - |
dc.date.issued | 2012-06-01 | en_US |
dc.identifier.issn | 2070-0733 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/16661 | - |
dc.description.abstract | "This study presents a modification of the central-upwind Kurganov scheme for approximating the solution of the 2D Euler equation. The prototype, extended from a 1D model, reduces substantially less dissipation than expected. The problem arises from over-restriction of some slope limiters, which keep slopes between interfaces of cells to be Total-Variation-Diminishing. This study reports the defect and presents a re-derived optimal formula. Numerical experiments highlight the significance of this formula, especially in long-time, large-scale simulations." | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Hyperbolic systems of conservation laws | en_US |
dc.subject | Godunov-type finite-volume methods | en_US |
dc.subject | central-upwind scheme | en_US |
dc.subject | Kurganov | en_US |
dc.subject | numerical dissipation | en_US |
dc.subject | anti-diffusion | en_US |
dc.title | Modifying and Reducing Numerical Dissipation in A Two-Dimensional Central-Upwind Scheme | en_US |
dc.type | Article | en_US |
dc.identifier.journal | ADVANCES IN APPLIED MATHEMATICS AND MECHANICS | en_US |
dc.citation.volume | 4 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.epage | 340 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000306793300005 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |