完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYu, Chi-Jeren_US
dc.contributor.authorLiu, Chii-Tungen_US
dc.date.accessioned2014-12-08T15:23:56Z-
dc.date.available2014-12-08T15:23:56Z-
dc.date.issued2012-06-01en_US
dc.identifier.issn2070-0733en_US
dc.identifier.urihttp://hdl.handle.net/11536/16661-
dc.description.abstract"This study presents a modification of the central-upwind Kurganov scheme for approximating the solution of the 2D Euler equation. The prototype, extended from a 1D model, reduces substantially less dissipation than expected. The problem arises from over-restriction of some slope limiters, which keep slopes between interfaces of cells to be Total-Variation-Diminishing. This study reports the defect and presents a re-derived optimal formula. Numerical experiments highlight the significance of this formula, especially in long-time, large-scale simulations."en_US
dc.language.isoen_USen_US
dc.subjectHyperbolic systems of conservation lawsen_US
dc.subjectGodunov-type finite-volume methodsen_US
dc.subjectcentral-upwind schemeen_US
dc.subjectKurganoven_US
dc.subjectnumerical dissipationen_US
dc.subjectanti-diffusionen_US
dc.titleModifying and Reducing Numerical Dissipation in A Two-Dimensional Central-Upwind Schemeen_US
dc.typeArticleen_US
dc.identifier.journalADVANCES IN APPLIED MATHEMATICS AND MECHANICSen_US
dc.citation.volume4en_US
dc.citation.issue3en_US
dc.citation.epage340en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000306793300005-
dc.citation.woscount0-
顯示於類別:期刊論文