完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsieh, Sheau-Lingen_US
dc.contributor.authorHsieh, Sung-Huaien_US
dc.contributor.authorCheng, Po-Hsunen_US
dc.contributor.authorChen, Chi-Huangen_US
dc.contributor.authorHsu, Kai-Pingen_US
dc.contributor.authorLee, I-Shunen_US
dc.contributor.authorWang, Zhenyuen_US
dc.contributor.authorLai, Feipeien_US
dc.date.accessioned2014-12-08T15:24:14Z-
dc.date.available2014-12-08T15:24:14Z-
dc.date.issued2012-10-01en_US
dc.identifier.issn0148-5598en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10916-011-9762-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/16831-
dc.description.abstractIn this paper, we classify the breast cancer of medical diagnostic data. Information gain has been adapted for feature selections. Neural fuzzy (NF), k-nearest neighbor (KNN), quadratic classifier (QC), each single model scheme as well as their associated, ensemble ones have been developed for classifications. In addition, a combined ensemble model with these three schemes has been constructed for further validations. The experimental results indicate that the ensemble learning performs better than individual single ones. Moreover, the combined ensemble model illustrates the highest accuracy of classifications for the breast cancer among all models.en_US
dc.language.isoen_USen_US
dc.subjectEnsemble learningen_US
dc.subjectNeural fuzzyen_US
dc.subjectKNNen_US
dc.subjectQuadratic classifieren_US
dc.subjectInformation gainen_US
dc.titleDesign Ensemble Machine Learning Model for Breast Cancer Diagnosisen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10916-011-9762-6en_US
dc.identifier.journalJOURNAL OF MEDICAL SYSTEMSen_US
dc.citation.volume36en_US
dc.citation.issue5en_US
dc.citation.spage2841en_US
dc.citation.epage2847en_US
dc.contributor.department資訊技術服務中心zh_TW
dc.contributor.departmentInformation Technology Services Centeren_US
dc.identifier.wosnumberWOS:000307994400015-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000307994400015.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。