Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Chi-Kunen_US
dc.contributor.authorWu, Kung-Chienen_US
dc.date.accessioned2014-12-08T15:24:16Z-
dc.date.available2014-12-08T15:24:16Z-
dc.date.issued2012-09-01en_US
dc.identifier.issn0021-7824en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.matpur.2012.02.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/16864-
dc.description.abstractWe perform the mathematical derivation of the compressible and incompressible Euler equations from the modulated nonlinear Klein-Gordon equation. Before the formation of singularities in the limit system, the nonrelativistic-semiclassical limit is shown to be the compressible Euler equations. If we further rescale the time variable, then in the semiclassical limit (the light speed kept fixed), the incompressible Euler equations are recovered. The proof involves the modulated energy introduced by Brenier (2000) [1]. (C) 2012 Elsevier Masson SAS. All rights reserved.en_US
dc.language.isoen_USen_US
dc.titleHydrodynamic limits of the nonlinear Klein-Gordon equationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.matpur.2012.02.002en_US
dc.identifier.journalJOURNAL DE MATHEMATIQUES PURES ET APPLIQUEESen_US
dc.citation.volume98en_US
dc.citation.issue3en_US
dc.citation.spage328en_US
dc.citation.epage345en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.department數學建模與科學計算所(含中心)zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.contributor.departmentGraduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000308853700004-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000308853700004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.