標題: Hydrodynamic limits of the nonlinear Klein-Gordon equation
作者: Lin, Chi-Kun
Wu, Kung-Chien
應用數學系
數學建模與科學計算所(含中心)
Department of Applied Mathematics
Graduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematics
公開日期: 1-九月-2012
摘要: We perform the mathematical derivation of the compressible and incompressible Euler equations from the modulated nonlinear Klein-Gordon equation. Before the formation of singularities in the limit system, the nonrelativistic-semiclassical limit is shown to be the compressible Euler equations. If we further rescale the time variable, then in the semiclassical limit (the light speed kept fixed), the incompressible Euler equations are recovered. The proof involves the modulated energy introduced by Brenier (2000) [1]. (C) 2012 Elsevier Masson SAS. All rights reserved.
URI: http://dx.doi.org/10.1016/j.matpur.2012.02.002
http://hdl.handle.net/11536/16864
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2012.02.002
期刊: JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES
Volume: 98
Issue: 3
起始頁: 328
結束頁: 345
顯示於類別:期刊論文


文件中的檔案:

  1. 000308853700004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。