Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Cheng-Kuanen_US
dc.contributor.authorShih, Yuan-Kangen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:24:26Z-
dc.date.available2014-12-08T15:24:26Z-
dc.date.issued2012-07-01en_US
dc.identifier.issn0381-7032en_US
dc.identifier.urihttp://hdl.handle.net/11536/16953-
dc.description.abstractLet G = (V, E) be a hamiltonian graph. A hamiltonian cycle C of G is described as < v(1), v(2) ,..., v(n)(G), v(1)> to emphasize the order of vertices in C. Thus, v(1) is the beginning vertex and v(i) is the i-th vertex in C. Two hamiltonian cycles of G beginning at u, C-1 = < u(1), u(2),..., u(n(G)), u(1)> and C-2 = < v(1), v(2), ..., v(n(G),) v(1)) of G are independent if u(1) = v(1) = u, and u(i) not equal v(i) for every 2 <= i <= n(G). A set of hamiltonian cycles {C-1, C-2,..., C-k} of G are mutually independent if they are pairwise independent. The mutually independent hamiltonianicity of graph G, IHC(G), is the maximum integer k such that for any vertex u there are k-mutually independent hamiltonian cycles of G beginning at u. In this paper, we prove that IHC(C) <= delta(G) for any hamiltonian graph and IHC(G) >= 2 delta(G) - n(G) + 1 if delta(G) >= n(G)/2. Moreover, we present some graphs that meet the bound mentioned above.en_US
dc.language.isoen_USen_US
dc.subjecthamiltonian cycleen_US
dc.subjectDirac theoremen_US
dc.subjectmutually independent hamiltonianen_US
dc.titleMutually Independent Hamiltonian Cycles in Some Graphsen_US
dc.typeArticleen_US
dc.identifier.journalARS COMBINATORIAen_US
dc.citation.volume106en_US
dc.citation.issueen_US
dc.citation.spage137en_US
dc.citation.epage142en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000306871600012-
dc.citation.woscount1-
Appears in Collections:Articles