Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuo, Jyhminen_US
dc.contributor.authorFu, Hung-Linen_US
dc.date.accessioned2014-12-08T15:24:26Z-
dc.date.available2014-12-08T15:24:26Z-
dc.date.issued2012-07-01en_US
dc.identifier.issn0381-7032en_US
dc.identifier.urihttp://hdl.handle.net/11536/16955-
dc.description.abstractThe generalized de Bruijn digraph denoted by G(B)(n, m) is the digraph (V, A) where V = {0, 1, . . . , m - 1} and (i, j) is an element of A if and only if j equivalent to ni + alpha (mod m) for some alpha is an element of {0, 1, . . . , n - 1}. By replacing each arc of G(B)(n, m) with an undirected edge and eliminating loops and multi-edges, we obtain a generalized undirected de Bruijn graph UG(B)(n, m). In this paper, we prove that the diameter of UG(B)(n, m) is equal to 3 whenever n >= 2 and n(2) + (root 5+1/2)n <= m <= 2n(2).en_US
dc.language.isoen_USen_US
dc.subjectgeneralized de Bruijn graphen_US
dc.subjectdiameteren_US
dc.titleOn the Diameter of the Generalized Undirected De Bruijn Graphsen_US
dc.typeArticleen_US
dc.identifier.journalARS COMBINATORIAen_US
dc.citation.volume106en_US
dc.citation.issueen_US
dc.citation.spage395en_US
dc.citation.epage408en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000306871600034-
dc.citation.woscount0-
Appears in Collections:Articles