完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Tai-Beenen_US
dc.contributor.authorChen, Jyh-Chengen_US
dc.contributor.authorLu, Henry Horng-Shingen_US
dc.date.accessioned2014-12-08T15:24:28Z-
dc.date.available2014-12-08T15:24:28Z-
dc.date.issued2012en_US
dc.identifier.issn0895-3996en_US
dc.identifier.urihttp://hdl.handle.net/11536/16978-
dc.identifier.urihttp://dx.doi.org/10.3233/XST-2012-0342en_US
dc.description.abstractSegmentation of positron emission tomography (PET) is typically achieved using the K-Means method or other approaches. In preclinical and clinical applications, the K-Means method needs a prior estimation of parameters such as the number of clusters and appropriate initialized values. This work segments microPET images using a hybrid method combining the Gaussian mixture model (GMM) with kernel density estimation. Segmentation is crucial to registration of disordered 2-deoxy-2-fluoro-D-glucose (FDG) accumulation locations with functional diagnosis and to estimate standardized uptake values (SUVs) of region of interests (ROIs) in PET images. Therefore, simulation studies are conducted to apply spherical targets to evaluate segmentation accuracy based on Tanimoto's definition of similarity. The proposed method generates a higher degree of similarity than the K-Means method. The PET images of a rat brain are used to compare the segmented shape and area of the cerebral cortex by the K-Means method and the proposed method by volume rendering. The proposed method provides clearer and more detailed activity structures of an FDG accumulation location in the cerebral cortex than those by the K-Means method.en_US
dc.language.isoen_USen_US
dc.subjectPETen_US
dc.subjectFDGen_US
dc.subjectcerebral cortexen_US
dc.subjectK-Meansen_US
dc.subjectGaussian mixture modelen_US
dc.subjectkernel density estimationen_US
dc.titleSegmentation of 3D microPET images of the rat brain via the hybrid gaussian mixture method with kernel density estimationen_US
dc.typeArticleen_US
dc.identifier.doi10.3233/XST-2012-0342en_US
dc.identifier.journalJOURNAL OF X-RAY SCIENCE AND TECHNOLOGYen_US
dc.citation.volume20en_US
dc.citation.issue3en_US
dc.citation.spage339en_US
dc.citation.epage349en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000308691500008-
dc.citation.woscount0-
顯示於類別:期刊論文