完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTseng, Po-Hsuanen_US
dc.contributor.authorFeng, Kai-Tenen_US
dc.date.accessioned2014-12-08T15:24:36Z-
dc.date.available2014-12-08T15:24:36Z-
dc.date.issued2009en_US
dc.identifier.isbn978-1-4244-5123-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/17070-
dc.identifier.urihttp://dx.doi.org/10.1109/PIMRC.2009.5449917en_US
dc.description.abstractLocation estimation and tracking for the mobile devices have attracted a significant amount of attention in recent years. The location estimators associated with the Kalman filtering techniques are exploited to both acquire location estimation and trajectory tracking for the mobile devices. However, most of the existing schemes become inapplicable for location tracking due to the deficiency of signal sources. In this paper, the enhanced predictive location tracking (EPLT) are proposed to alleviate this problem. The EPLT scheme utilizes the predictive information obtained from the Kalman filter in order to provide the additional signal inputs for the location estimator. Furthermore, the EPLT scheme incorporates the geometric dilution of precision (GDOP) information into the algorithm design. Persistent accuracy for location tracking can be achieved by adopting the proposed EPLT scheme, especially with inadequate signal sources. Numerical results demonstrate that the EPLT algorithm can achieve better precision in comparison with other location tracking schemes.en_US
dc.language.isoen_USen_US
dc.titleAn Enhanced Predictive Location Tracking Scheme with Deficient Signal Sources for Wireless Networksen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/PIMRC.2009.5449917en_US
dc.identifier.journal2009 IEEE 20TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONSen_US
dc.citation.spage1913en_US
dc.citation.epage1917en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000305824601185-
顯示於類別:會議論文


文件中的檔案:

  1. 000305824601185.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。