完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Tsaipeien_US
dc.date.accessioned2014-12-08T15:24:37Z-
dc.date.available2014-12-08T15:24:37Z-
dc.date.issued2006en_US
dc.identifier.isbn978-3-540-68297-4en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/17081-
dc.description.abstractWe present in this paper a new type of alternating-optimization based possibilistic c-shell clustering algorithm called possibilistic c-template (PCT). A template is represented by a set of line segments. A cluster prototype consists of a copy of the template after translation, scaling, and rotation transforms. This extends the capability of shell clustering beyond a few standard geometrical shapes that have been studied so far. We use a number of 2-dimensional data sets to illustrate the application of our algorithm in detecting generic template-based shapes in images. Techniques taken to relax the requirements of known number of clusters and good initialization are also described. Results for both synthetic and actual image data are presented.en_US
dc.language.isoen_USen_US
dc.subjectshell clusteringen_US
dc.subjectfuzzy clusteringen_US
dc.subjectpossibilistic clusteringen_US
dc.subjectrobust clusteringen_US
dc.subjectobject and shape detectionen_US
dc.subjecttemplate-based methodsen_US
dc.titlePossibilistic c-template clustering and its application in object detection in imagesen_US
dc.typeProceedings Paperen_US
dc.identifier.journalAdvances in Image and Video Technology, Proceedingsen_US
dc.citation.volume4319en_US
dc.citation.spage383en_US
dc.citation.epage392en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000244669500038-
顯示於類別:會議論文