Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Yih-Ruen_US
dc.date.accessioned2014-12-08T15:24:37Z-
dc.date.available2014-12-08T15:24:37Z-
dc.date.issued2006en_US
dc.identifier.isbn978-3-540-49665-6en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/17090-
dc.description.abstractIn this paper, the supervised maximum-divergence common component GMM (MD-CCGMM) model was used to the speaker-and-environment change detection in broadcast news signal. In order to discriminate the speaker-and-environment change in broadcast news, the MD-CCGMM signal model will maximize the likelihood of CCGMM signal modeling and the divergence measure of different audio signal segments simultaneously. Performance of the MD-CCGMM model was examined using a four-hour TV broadcast news database. A result of 16.0% Equal Error Rate (EER) was achieved by using the divergence measure of CCGMM model. When using supervised MD-CCGMM model, 14.6% Equal Error Rate can be achieved.en_US
dc.language.isoen_USen_US
dc.subjectspeaker-and-environment change detectionen_US
dc.subjectcommon componenten_US
dc.subjectGaussian mixture modelen_US
dc.subjectmaximum divergence measureen_US
dc.titleSpeaker-and-environment change detection in broadcast news using maximum divergence common component GMMen_US
dc.typeProceedings Paperen_US
dc.identifier.journalChinese Spoken Language Processing, Proceedingsen_US
dc.citation.volume4274en_US
dc.citation.spage106en_US
dc.citation.epage115en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000244824800010-
Appears in Collections:Conferences Paper