完整後設資料紀錄
DC 欄位語言
dc.contributor.authorCheng, Shih-Sianen_US
dc.contributor.authorXu, Yeong-Yuhen_US
dc.contributor.authorWang, Hsin-Minen_US
dc.contributor.authorFu, Hsin-Chiaen_US
dc.date.accessioned2014-12-08T15:24:37Z-
dc.date.available2014-12-08T15:24:37Z-
dc.date.issued2006en_US
dc.identifier.isbn978-3-540-49665-6en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/17092-
dc.description.abstractIn this paper, we propose a model-based hierarchical clustering algorithm that automatically builds a regression class tree for the well-known speaker adaptation technique - Maximum Likelihood Linear Regression (MLLR). When building a regression class tree, the mean vectors of the Gaussian components of the model set of a speaker independent CDHMM-based speech recognition system are collected as the input data for clustering. The proposed algorithm comprises two stages. First, the input data (i.e., all the Gaussian mean vectors of the CDHMMs) is iteratively partitioned by a divisive hierarchical clustering strategy, and the Bayesian Information Criterion (BIC) is applied to determine the number of clusters (i.e., the base classes of the regression class tree). Then, the regression class tree is built by iteratively merging these base clusters using an agglomerative hierarchical clustering strategy, which also uses BIC as the merging criterion. We evaluated the proposed regression class tree construction algorithm on a Mandarin Chinese continuous speech recognition task. Compared to the regression class tree implementation in HTK, the proposed algorithm is more effective in building the regression class tree and can determine the number of regression classes automatically.en_US
dc.language.isoen_USen_US
dc.subjectspeaker adaptationen_US
dc.subjectMLLRen_US
dc.subjectregression class treeen_US
dc.titleAutomatic construction of regression class tree for MLLR via model-based hierarchical clusteringen_US
dc.typeProceedings Paperen_US
dc.identifier.journalChinese Spoken Language Processing, Proceedingsen_US
dc.citation.volume4274en_US
dc.citation.spage390en_US
dc.citation.epage398en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000244824800037-
顯示於類別:會議論文