Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Chao-Hongen_US
dc.contributor.authorLiu, Wei-Nanen_US
dc.contributor.authorChen, Ying-Pingen_US
dc.date.accessioned2014-12-08T15:24:38Z-
dc.date.available2014-12-08T15:24:38Z-
dc.date.issued2006en_US
dc.identifier.isbn978-1-59593-186-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/17103-
dc.description.abstractThis paper proposes an adaptive discretization method, called Split-on-Demand (SoD), to enable the probabilistic model building genetic algorithm (PMBGA) to solve optimization problems in the continuous domain. The procedure, effect, and usage of SoD are described in detail. As an example, the integration of SoD and the extended compact genetic algorithm (ECGA), named real-coded ECGA (rECGA), is presented and numerically examined. The experimental results indicate that rECGA works well and SoD is effective. The behavior of SoD is analyzed and discussed, followed by the potential future work for SoD.en_US
dc.language.isoen_USen_US
dc.subjectadaptive discretizationen_US
dc.subjectsplit-on-demanden_US
dc.subjectextended compact genetic algorithmen_US
dc.subjectreal-parameter optimizationen_US
dc.titleAdaptive discretization for Probabilistic model building genetic algorithmsen_US
dc.typeProceedings Paperen_US
dc.identifier.journalGECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2en_US
dc.citation.spage1103en_US
dc.citation.epage1110en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000249917300154-
Appears in Collections:Conferences Paper