完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Chi-Hsuen_US
dc.date.accessioned2014-12-08T15:24:42Z-
dc.date.available2014-12-08T15:24:42Z-
dc.date.issued2006en_US
dc.identifier.isbn1-4244-0065-1en_US
dc.identifier.issn1810-7869en_US
dc.identifier.urihttp://hdl.handle.net/11536/17153-
dc.description.abstractThis paper proposes a dynamical optimal training algorithm for a three layer neural network (NN) with sigmoid activation functions in the hidden and output layers. This three layer neural network can be used for classification problems, such as the classification of Iris data. The mathematical formulation of this three layer NN is rigorously derived first in this paper, so that the dynamical optimal training of it can be performed. The dynamical optimal training process for this three layer NN is therefore presented which guarantees the convergence of the training in a minimum number of epochs. This dynamical optimal training does not use fixed learning rate for training. Instead, the learning rates are updated for next iteration to guarantee the optimal convergence of the training result. Excellent results have been obtained for XOR and Iris data set.en_US
dc.language.isoen_USen_US
dc.titleDynamic optimal training of a three layer neural network with sigmoid functionen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROLen_US
dc.citation.spage392en_US
dc.citation.epage397en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000239057000071-
顯示於類別:會議論文