Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Shin-Kaien_US
dc.contributor.authorLin, Tay-Jyien_US
dc.contributor.authorLiu, Chih-Weien_US
dc.date.accessioned2014-12-08T15:24:45Z-
dc.date.available2014-12-08T15:24:45Z-
dc.date.issued2009en_US
dc.identifier.isbn978-1-4244-4334-5en_US
dc.identifier.issn1520-6130en_US
dc.identifier.urihttp://hdl.handle.net/11536/17196-
dc.description.abstractObject detection is an important function for intelligent multimedia processing, but its computational complexity prevented its pervasive uses in consumer electronics. Cost-effective & energy-efficient computations are now available with various innovative multicore architectures proposed for embedded systems. However, extensive software optimizations are needed to unravel the inherent parallelisms in object detection for multicore processing. This paper presents interleaved reordering and splitting of parallel tasks in object detection. Overall performance improvements by 10% & 19% have been measured for the proposed methods respectively on a face detection prototype implemented on Sony PlayStation 3.en_US
dc.language.isoen_USen_US
dc.titleParallel Object Detection on Multicore Platformsen_US
dc.typeProceedings Paperen_US
dc.identifier.journalSIPS: 2009 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMSen_US
dc.citation.spage75en_US
dc.citation.epage80en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000274328800014-
Appears in Collections:Conferences Paper