完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorLiang, Sheng-Fuen_US
dc.contributor.authorChao, Wen-Hungen_US
dc.contributor.authorKo, Li-Weien_US
dc.contributor.authorChao, Chih-Fengen_US
dc.contributor.authorChen, Yu-Chichen_US
dc.contributor.authorHuang, Teng-Yien_US
dc.date.accessioned2014-12-08T15:24:48Z-
dc.date.available2014-12-08T15:24:48Z-
dc.date.issued2006en_US
dc.identifier.isbn978-1-4244-0099-7en_US
dc.identifier.issn1062-922Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/17245-
dc.identifier.urihttp://dx.doi.org/10.1109/ICSMC.2006.385084en_US
dc.description.abstractDriving safely has received increasing attention of the publics due to the growing number of traffic accidents that the driver's driving style is highly correlated to many accidents. The purpose of this study is to investigate the relationship between driver's driving style and driver's ERP response. In our research, a virtual reality (VR) driving environment is developed to provide stimuli to subjects. Independent component analysis (ICA) is used to decompose the electroencephalogram (EEG) data. The power spectrum analysis of ICA components and correlation analysis are employed to investigate the EEG activities related to driving style. Experimental results demonstrate that we may classify the drivers into aggressive or gentle styles based on the observed ERP difference corresponding to the proposed unexpected obstacle dodging tasks.en_US
dc.language.isoen_USen_US
dc.titleDriving style classification by analyzing EEG responses to unexpected obstacle dodging tasksen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/ICSMC.2006.385084en_US
dc.identifier.journal2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGSen_US
dc.citation.spage4916en_US
dc.citation.epage4919en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000248078505082-
顯示於類別:會議論文


文件中的檔案:

  1. 000248078505082.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。