完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, C-H.en_US
dc.contributor.authorKoeppl, H.en_US
dc.contributor.authorLin, C-T.en_US
dc.date.accessioned2014-12-08T15:24:48Z-
dc.date.available2014-12-08T15:24:48Z-
dc.date.issued2006en_US
dc.identifier.isbn978-0-7803-9490-2en_US
dc.identifier.issn1098-7576en_US
dc.identifier.urihttp://hdl.handle.net/11536/17250-
dc.identifier.urihttp://dx.doi.org/10.1109/IJCNN.2006.247271en_US
dc.description.abstractIn this work we propose a novel computer fovea model based on hexagonal-type Cellular Neural Networks (hCNN). The hCNN represents a new image processing architecture that is motivated by the overwhelming evidence for hexagonal image processing in biological systems. The necessary new coupling templates and basic hCNN image operators are introduced. The fovea model includes the biological mechanisms of the photoreceptors, the horizontal cells, the ganglions, the bipolar cells, and their cooperation. Thus the model describes the signal processing from the optical stimulation at retina to the output of the ganglion cells. Different building blocks of the model turned out to be useful for practical image enhancement algorithms. Two such applications are considered in this work, namely the image sharpness improvement and the color constancy algorithm.en_US
dc.language.isoen_USen_US
dc.titleA bio-inspired computer fovea model based on hexagonal-type cellular neural networksen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/IJCNN.2006.247271en_US
dc.identifier.journal2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10en_US
dc.citation.spage5189en_US
dc.citation.epage5195en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000245125909051-
顯示於類別:會議論文