Full metadata record
DC FieldValueLanguage
dc.contributor.authorHung, Chih-Chiehen_US
dc.contributor.authorPeng, Wen-Chihen_US
dc.date.accessioned2014-12-08T15:24:56Z-
dc.date.available2014-12-08T15:24:56Z-
dc.date.issued2006en_US
dc.identifier.isbn978-0-7695-2749-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/17312-
dc.identifier.urihttp://dx.doi.org/10.1109/WI-IATW.2006.20en_US
dc.description.abstractOne promising application of sensor networks is object tracking. Because the movements of the tracked objects usually show repeating patterns, we propose a heterogeneous tracking model, referred to as HTM, to efficiently mine object moving patterns and track objects. To ensure the quality of moving patterns, we develop a storage management to facilitate mining object moving patterns. Specifically, we explore load-balance feature to store more moving data for mining moving patterns. Once a storage of a cluster head is occupied by moving data, we devise a replacement strategy to replace the less informative patterns. Simulation results show that HTM with storage management is able not only to increase the accuracy of predition but also to save more energy in tracking objects.en_US
dc.language.isoen_USen_US
dc.titleA storage management for mining object moving patterns in object tracking sensor networksen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/WI-IATW.2006.20en_US
dc.identifier.journal2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Workshops Proceedingsen_US
dc.citation.spage252en_US
dc.citation.epage256en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000244608000057-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000244608000057.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.