完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, CYen_US
dc.contributor.authorHong, TPen_US
dc.contributor.authorTseng, SSen_US
dc.date.accessioned2014-12-08T15:24:58Z-
dc.date.available2014-12-08T15:24:58Z-
dc.date.issued2006en_US
dc.identifier.isbn3-540-28315-3en_US
dc.identifier.issn1860-949Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/17340-
dc.description.abstractIn the past;, incremental mining approaches usually considered getting the newest; set; of knowledge consistent; with the entire set of data inserted so far. Users can not, however, use them to obtain rules or patterns only from their interesting portion of the data. In addition, these approaches only focused on finding frequent patterns in a specified part of a database. That is, although the data records are collected in under certain time, place and category, such contexts (circumstances) have been ignored in conventional mining algorithms. It will cause the lack of patterns or rules to help users solve problems at, different, aspects and with diverse considerations. In this paper, we thus attempt; to extend incremental mining to online decision support under multidimensional context considerations. We first propose the multidimensional pattern relation to structurally and systematically retain the additional context information and mining information for each inserted dataset into a database. We then develop an algorithm based on the proposed multidimensional pattern relation to correctly and efficiently fulfill diverse on-fine mining requests.en_US
dc.language.isoen_USen_US
dc.subjectdata miningen_US
dc.subjectassociation ruleen_US
dc.subjectincremental miningen_US
dc.subjectmulti-dimensional miningen_US
dc.subjectconstraint-based miningen_US
dc.subjectdata warehouseen_US
dc.titleMultidimensional on-line miningen_US
dc.typeProceedings Paperen_US
dc.identifier.journalFoundations and Novel Approaches in Data Miningen_US
dc.citation.volume9en_US
dc.citation.spage243en_US
dc.citation.epage257en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000235303500014-
顯示於類別:會議論文