完整後設資料紀錄
DC 欄位語言
dc.contributor.authorCheng, Shih-Sianen_US
dc.contributor.authorChao, Yi-Hsiangen_US
dc.contributor.authorWang, Hsin-Minen_US
dc.contributor.authorFu, Hsin-Chiaen_US
dc.date.accessioned2014-12-08T15:25:02Z-
dc.date.available2014-12-08T15:25:02Z-
dc.date.issued2006en_US
dc.identifier.isbn0-7695-2521-0en_US
dc.identifier.issn1051-4651en_US
dc.identifier.urihttp://hdl.handle.net/11536/17413-
dc.description.abstractThis paper presents a genetic algorithm (GA) for K-means clustering. Instead of the widely applied string-of-group-numbers encoding, we encode the prototypes of the clusters into the chromosomes. The crossover operator is designed to exchange prototypes between two chromosomes. The one-step K-means algorithm is used as the mutation operator. Hence, the proposed GA is called the prototypes-embedded genetic K-means algorithm (PGKA). With the inherent evolution process of evolutionary algorithms, PGKA has superior performance than the classical K-means algorithm, while comparing to other GA-based approaches, PGKA is more efficient and suitable for large scale data sets.en_US
dc.language.isoen_USen_US
dc.titleA prototypes-embedded genetic K-means algorithmen_US
dc.typeProceedings Paperen_US
dc.identifier.journal18th International Conference on Pattern Recognition, Vol 2, Proceedingsen_US
dc.citation.spage724en_US
dc.citation.epage727en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000240678300174-
顯示於類別:會議論文