完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Cheng, Shih-Sian | en_US |
dc.contributor.author | Chao, Yi-Hsiang | en_US |
dc.contributor.author | Wang, Hsin-Min | en_US |
dc.contributor.author | Fu, Hsin-Chia | en_US |
dc.date.accessioned | 2014-12-08T15:25:02Z | - |
dc.date.available | 2014-12-08T15:25:02Z | - |
dc.date.issued | 2006 | en_US |
dc.identifier.isbn | 0-7695-2521-0 | en_US |
dc.identifier.issn | 1051-4651 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/17413 | - |
dc.description.abstract | This paper presents a genetic algorithm (GA) for K-means clustering. Instead of the widely applied string-of-group-numbers encoding, we encode the prototypes of the clusters into the chromosomes. The crossover operator is designed to exchange prototypes between two chromosomes. The one-step K-means algorithm is used as the mutation operator. Hence, the proposed GA is called the prototypes-embedded genetic K-means algorithm (PGKA). With the inherent evolution process of evolutionary algorithms, PGKA has superior performance than the classical K-means algorithm, while comparing to other GA-based approaches, PGKA is more efficient and suitable for large scale data sets. | en_US |
dc.language.iso | en_US | en_US |
dc.title | A prototypes-embedded genetic K-means algorithm | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | 18th International Conference on Pattern Recognition, Vol 2, Proceedings | en_US |
dc.citation.spage | 724 | en_US |
dc.citation.epage | 727 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000240678300174 | - |
顯示於類別: | 會議論文 |