完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Wang, Tsaipei | en_US |
dc.date.accessioned | 2014-12-08T15:25:18Z | - |
dc.date.available | 2014-12-08T15:25:18Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.isbn | 978-1-4244-3596-8 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/17680 | - |
dc.identifier.uri | http://dx.doi.org/10.1109/FUZZY.2009.5277122 | en_US |
dc.description.abstract | There exist a multitude of fuzzy clustering algorithms with well understood properties and benefits in various applications. However, there has been very little analysis on using fuzzy clustering algorithms to generate the base clusterings in cluster ensembles. This paper focuses on the comparison of using hard and fuzzy c-means algorithms in the well known evidence-accumulation framework of cluster ensembles. Our new findings include the observations that the fuzzy c-means requires much fewer base clusterings for the cluster ensemble to converge, and is more tolerant of outliers in the data. Some insights are provided regarding the observed phenomena in our experiments. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Comparing Hard and Fuzzy C-Means for Evidence-Accumulation Clustering | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.doi | 10.1109/FUZZY.2009.5277122 | en_US |
dc.identifier.journal | 2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3 | en_US |
dc.citation.spage | 468 | en_US |
dc.citation.epage | 473 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000274242600082 | - |
顯示於類別: | 會議論文 |