完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Tsaipeien_US
dc.date.accessioned2014-12-08T15:25:18Z-
dc.date.available2014-12-08T15:25:18Z-
dc.date.issued2009en_US
dc.identifier.isbn978-1-4244-3596-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/17680-
dc.identifier.urihttp://dx.doi.org/10.1109/FUZZY.2009.5277122en_US
dc.description.abstractThere exist a multitude of fuzzy clustering algorithms with well understood properties and benefits in various applications. However, there has been very little analysis on using fuzzy clustering algorithms to generate the base clusterings in cluster ensembles. This paper focuses on the comparison of using hard and fuzzy c-means algorithms in the well known evidence-accumulation framework of cluster ensembles. Our new findings include the observations that the fuzzy c-means requires much fewer base clusterings for the cluster ensemble to converge, and is more tolerant of outliers in the data. Some insights are provided regarding the observed phenomena in our experiments.en_US
dc.language.isoen_USen_US
dc.titleComparing Hard and Fuzzy C-Means for Evidence-Accumulation Clusteringen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/FUZZY.2009.5277122en_US
dc.identifier.journal2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3en_US
dc.citation.spage468en_US
dc.citation.epage473en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000274242600082-
顯示於類別:會議論文


文件中的檔案:

  1. 000274242600082.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。