完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYang, MCen_US
dc.contributor.authorTan, JJMen_US
dc.contributor.authorHsu, LHen_US
dc.date.accessioned2014-12-08T15:25:28Z-
dc.date.available2014-12-08T15:25:28Z-
dc.date.issued2005en_US
dc.identifier.isbn1-932415-71-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/17875-
dc.description.abstractThe hypercube Q(n) is one of the most popular networks. In, this paper, we first prove that the n-dimensional hypercube is 2n - 5 conditional fault- bipancyclic. That is, an injured hypercube with up to 2n - 5 faulty links has a cycle of length I for every even 4 <= l <= 2(n) when each node of the hypercube is incident with at least two healthy links. In addition, if a certain node is incident with less than two healthy links, we show that an injured hypercube contains cycles of all even lengths except hamiltonian cycles with up to 2n - 3 faulty links. Furthermore, the above two results are optimal. In conclusion, we find cycles of all possible lengths in injured hypercubes with up to 2n - 5 faulty links under all possible fault distributions.en_US
dc.language.isoen_USen_US
dc.subjectcycle embeddingen_US
dc.subjecthypercubeen_US
dc.subjectbipancyclicen_US
dc.subjectconditionalen_US
dc.subjectfault toleranceen_US
dc.titleCycles in highly faulty hypercubesen_US
dc.typeProceedings Paperen_US
dc.identifier.journalFCS '05: Proceedings of the 2005 International Conference on Foundations of Computer Scienceen_US
dc.citation.spage101en_US
dc.citation.epage107en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000236726300015-
顯示於類別:會議論文