Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, WNen_US
dc.contributor.authorTeng, CCen_US
dc.contributor.authorChen, CHen_US
dc.date.accessioned2014-12-08T15:25:44Z-
dc.date.available2014-12-08T15:25:44Z-
dc.date.issued2004en_US
dc.identifier.isbn0-88986-395-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/18159-
dc.description.abstractin this paper, an analytical methodology utilizing fuzzy neural network (FNN) that improves evaluation capabilities for switched reluctance motor (SRM) drives is presented. Firstly, a FNN is applied to establish the mapping relation among the driving current, rotor angle, and equivalent inductance by the information obtained from the SRM characteristics measurements. Then two FNNs, which own the competence to do partial derivative computation, are constructed herein to complete this FNN-based analysis model. The computation results under different speed commands and load conditions respectively verify the proposed analysis opinions.en_US
dc.language.isoen_USen_US
dc.subjectfuzzy neural network (FNN)en_US
dc.subjectswitched reluctance motor (SRM)en_US
dc.titleFuzzy neural network (FNN)-based model analysis techniques for enhancing the development evaluation for switched reluctance motor (SRM) drivesen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF THE FOURTH IASTED INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMSen_US
dc.citation.spage313en_US
dc.citation.epage318en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000228459400053-
Appears in Collections:Conferences Paper