Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, APen_US
dc.contributor.authorChen, YCen_US
dc.contributor.authorYeh, CYen_US
dc.date.accessioned2014-12-08T15:25:44Z-
dc.date.available2014-12-08T15:25:44Z-
dc.date.issued2004en_US
dc.identifier.isbn0-88986-404-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/18160-
dc.description.abstractDynamic time warping (DTW) is a robust but time-consuming on distance measure for time-series data similarity search. To speed up DTW for time-series data analysis, a new approach with trie-structure is introduced for the process of the DTW recognition steps, such as in financial stock pattern analysis. The final result shows that searching time has been reduced by this approach while applying trie-structure to DTW on time-series data analysis, especially on stock data.en_US
dc.language.isoen_USen_US
dc.subjectDynamic Time Warpingen_US
dc.subjectstock dataen_US
dc.subjecttime-series dataen_US
dc.subjecttrie-structureen_US
dc.titleApplying trie-structure to improve dynamic time warping on time-series stock data analysisen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND APPLICATIONS, VOLS 1AND 2en_US
dc.citation.spage31en_US
dc.citation.epage36en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000228622100006-
Appears in Collections:Conferences Paper