Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, YLen_US
dc.contributor.authorChiu, CCen_US
dc.contributor.authorWu, BFen_US
dc.date.accessioned2014-12-08T15:25:46Z-
dc.date.available2014-12-08T15:25:46Z-
dc.date.issued2004en_US
dc.identifier.isbn0-7803-8566-7en_US
dc.identifier.issn1062-922Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/18197-
dc.description.abstractThis paper proposes a new segmentation method to separate the text from various complex document images. An automatic multilevel thresholding method, based on discriminant analysis, is utilized to recursively segment a specified block region into several layered image sub-blocks. Then the multi-layer region-based clustering method is performed to process the layered image sub-blocks to form several object layers. Hence character strings with different illuminations, non-text objects and background components are segmented into separate object layers. After performed text extraction process, the text objects with different sizes, styles and illuminations are properly extracted. Experimental results on the extraction of text strings from complex document images demonstrate the effectiveness of the proposed region-based segmentation method.en_US
dc.language.isoen_USen_US
dc.subjectimage segmentationen_US
dc.subjectmultilevel thresholdingen_US
dc.subjectregion-based segmentationen_US
dc.subjectdocument analysisen_US
dc.titleComplex document image segmentation using localized histogram analysis with multi-layer matching and clusteringen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7en_US
dc.citation.spage3063en_US
dc.citation.epage3070en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000226863300514-
Appears in Collections:Conferences Paper