Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, RCen_US
dc.contributor.authorLin, CTen_US
dc.contributor.authorLiang, SFen_US
dc.contributor.authorHuang, TYen_US
dc.contributor.authorJung, TPen_US
dc.date.accessioned2014-12-08T15:25:46Z-
dc.date.available2014-12-08T15:25:46Z-
dc.date.issued2004en_US
dc.identifier.isbn0-7803-8566-7en_US
dc.identifier.issn1062-922Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/18202-
dc.description.abstractAccidents caused by drivers' drowsiness have a high fatality rate because of the marked decline in the drivers' vehicle control abilities. Preventing accidents caused by drowsiness is highly desirable but requires techniques for continuously detecting, estimating, and predicting the level. of alertness of drivers. This paper proposes a brain-machine interface that combines electroencephalographic power spectrum estimation, principal. component analysis, and fuzzy neural networks to estimate/predict drivers' drowsiness level in a virtual-reality-based driving simulator. The driving performance is defined as deviation between the center of the vehicle and the center of the cruising lane. Our results demonstrated that the proposed method is feasible to accurately estimate quantitatively driving performance in a realistic driving simulator.en_US
dc.language.isoen_USen_US
dc.subjectsoft computingen_US
dc.subjectdrowsinessen_US
dc.subjectEEGen_US
dc.subjectpower spectrumen_US
dc.subjectfuzzy neural networken_US
dc.titleEEG-based fuzzy neural network estimator for driving performanceen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7en_US
dc.citation.spage4034en_US
dc.citation.epage4040en_US
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000226863300680-
Appears in Collections:Conferences Paper