完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, CTen_US
dc.contributor.authorChen, SAen_US
dc.contributor.authorHuang, CHen_US
dc.contributor.authorChung, JFen_US
dc.date.accessioned2014-12-08T15:25:46Z-
dc.date.available2014-12-08T15:25:46Z-
dc.date.issued2004en_US
dc.identifier.isbn0-7803-8359-1en_US
dc.identifier.issn1098-7576en_US
dc.identifier.urihttp://hdl.handle.net/11536/18204-
dc.description.abstractIn this paper, we proposed a new index which can be used to classify the texture image. Because of the adjustment of image capture device or the distortion of image capture, the texture image may be transformed. Usually those transformations included rotation and scale. The proposed method provides an algorithm to avoid those effects respectively. This approach is the combination of Cellular Neural Networks and Principle Component Analysis Neural Networks. This fact implies it is a feed-forward neural networks, and it does not need any training set.en_US
dc.language.isoen_USen_US
dc.subjectrotation scale invarianten_US
dc.subjecttexture classificationen_US
dc.subjectcellular neural networksen_US
dc.subjectGabor-type filteringen_US
dc.subjectprinciple component analysis neural networksen_US
dc.titleCellular neural networks and PCA neural networks based rotation/scale invariant texture classificationen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGSen_US
dc.citation.spage153en_US
dc.citation.epage158en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000224941900026-
顯示於類別:會議論文