Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Huang, KY | en_US |
dc.contributor.author | Chao, YH | en_US |
dc.date.accessioned | 2014-12-08T15:25:46Z | - |
dc.date.available | 2014-12-08T15:25:46Z | - |
dc.date.issued | 2004 | en_US |
dc.identifier.isbn | 0-7803-8359-1 | en_US |
dc.identifier.issn | 1098-7576 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/18206 | - |
dc.description.abstract | We combine neural network and syntactic pattern recognition, and propose a tree automaton system for the recognition of structural seismic patterns in a seismogram Multilayer perceptron of the neural network is used for the identification of subpatterns, then a tree representation of the structural seismic pattern is constructed. We use three kinds of modified bottom-up structure preserved error correcting tree automata to recognize the tree representation of syntactic pattern, and propose a new top-down error correcting tree automaton to recognize non-structural preserved seismic pattern. In the experiments, the system is applied to the simulated and the real seismic bright spot patterns. The recognition result can improve seismic interpretation. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Neural network and tree automaton for seismic pattern recognition | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS | en_US |
dc.citation.spage | 663 | en_US |
dc.citation.epage | 668 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000224941900116 | - |
Appears in Collections: | Conferences Paper |