完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSun, SYen_US
dc.contributor.authorTseng, CLen_US
dc.contributor.authorChen, YHen_US
dc.contributor.authorChuang, SCen_US
dc.contributor.authorFu, HCen_US
dc.date.accessioned2014-12-08T15:25:46Z-
dc.date.available2014-12-08T15:25:46Z-
dc.date.issued2004en_US
dc.identifier.isbn0-7803-8359-1en_US
dc.identifier.issn1098-7576en_US
dc.identifier.urihttp://hdl.handle.net/11536/18207-
dc.description.abstractBased on Statistical learning theory, Support Vector Machines(SVM) is a powerful tool for various classification problems, such as pattern recognition and speaker identification etc. However, Training SVM consumes large memory and long computing time. This paper proposes a cluster-based learning methodology to reduce training time and the memory size for SVM. By using k-means based clustering technique, training data at boundary of each cluster were selected for SVM learning. We also applied this technique to text-independent speaker identification problems. Without deteriorating recognition performance, the training data and time can be reduced up to 75% and 87.5% respectively.en_US
dc.language.isoen_USen_US
dc.titleCluster-based support vector machines in text-independent speaker identificationen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGSen_US
dc.citation.spage729en_US
dc.citation.epage734en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000224941900127-
顯示於類別:會議論文