Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, HDen_US
dc.contributor.authorHorng, JTen_US
dc.contributor.authorSun, YMen_US
dc.contributor.authorTsou, APen_US
dc.contributor.authorHuang, SLen_US
dc.date.accessioned2014-12-08T15:25:49Z-
dc.date.available2014-12-08T15:25:49Z-
dc.date.issued2004en_US
dc.identifier.isbn0-7695-2135-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/18259-
dc.description.abstractRecently, biological databases and analytical methods have become available for analyzing gene expression and transcriptional regulatory sequences. However, users must make the complicated analyses to query the data in various databases, and to analyze the gene upstreams using various predictive tools. Beyond methods for predicting transcriptional regulatory sites, new automated and integrated methods for analyzing gene upstream sequences on a higher level are urgently required. We present an integrated system to predict transcriptional regulatory sites and detect co-occurrence of these regulatory sites after a set of genes are input. The system comprises a biological data warehousing system, patient discovery programs, pattern occurrence association detectors and user interfaces. User profiles and history pages enable users to trace the sequence analyses for transcriptional regulatory sites.en_US
dc.language.isoen_USen_US
dc.titleIdentifying transcriptional regulatory sites in the human genome using an integrated computationen_US
dc.typeProceedings Paperen_US
dc.identifier.journalI-SPAN 2004: 7TH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND NETWORKS, PROCEEDINGSen_US
dc.citation.spage637en_US
dc.citation.epage642en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000222086800103-
Appears in Collections:Conferences Paper