完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, JYen_US
dc.contributor.authorCheng, CPen_US
dc.contributor.authorTsai, WCen_US
dc.contributor.authorChen, APen_US
dc.date.accessioned2014-12-08T15:25:53Z-
dc.date.available2014-12-08T15:25:53Z-
dc.date.issued2004en_US
dc.identifier.isbn0-88986-404-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/18316-
dc.description.abstractThe artificial intelligence can dynamically learn and adapt to the change of environments for maximizing the desired goals. This paper conducts simulation experiment to evolve learning classifier system (LCS) for short-term stock forecast decision. Since stock price trend is influenced by unknown and unpredictable surroundings, using LCS to model the fluctuations on financial market allows for the capability to discover the patterns of future trends. Furthermore, the institutional investment is the main consideration of this research by implementing LCS for making strategies. More specifically, LCS is capable of evolving from generation to generation, and in this way can provide the highest profit for future decision-making. In simulation work using real financial data, it is found that LCS produces great profits, and is quite practical for investors.en_US
dc.language.isoen_USen_US
dc.subjectlearning classifier systemen_US
dc.subjectinstitutional investmenten_US
dc.subjectstock marketen_US
dc.titleUsing learning classifier system for making investment strategies based on institutional analysisen_US
dc.typeProceedings Paperen_US
dc.identifier.journalProceedings of the IASTED International Conference on Artificial Intelligence and Applications, Vols 1and 2en_US
dc.citation.spage765en_US
dc.citation.epage769en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000228622100132-
顯示於類別:會議論文