Full metadata record
DC FieldValueLanguage
dc.contributor.authorLai, MCen_US
dc.date.accessioned2014-12-08T15:26:01Z-
dc.date.available2014-12-08T15:26:01Z-
dc.date.issued2003en_US
dc.identifier.isbn0-8218-3261-1en_US
dc.identifier.issn0271-4132en_US
dc.identifier.urihttp://hdl.handle.net/11536/18435-
dc.description.abstractWe present a simple and efficient fast direct solver for 3D Poisson problem in elliptical coordinates. The method relies on representing the solution as a truncated Fourier series, then solving the partial differential equation of Fourier coefficients by second-order finite difference discretizations. Using a grid by shifting half mesh away from the poles and incorporating the derived numerical boundary values, the difficulty of coordinate singularities can be elevated easily. Besides, the resulting linear equations can be solved very efficiently by some existing numerical algorithms.en_US
dc.language.isoen_USen_US
dc.subjectfast Poisson solveren_US
dc.subjectelliptical coordinatesen_US
dc.subjectprolate spheroidal coordinatesen_US
dc.subjectsymmetry conditionen_US
dc.titleFast Poisson solver in a three-dimensional ellipsoiden_US
dc.typeProceedings Paperen_US
dc.identifier.journalCURRENT TRENDS IN SCIENTIFIC COMPUTINGen_US
dc.citation.volume329en_US
dc.citation.spage203en_US
dc.citation.epage208en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000225281200021-
Appears in Collections:Conferences Paper