Full metadata record
DC FieldValueLanguage
dc.contributor.authorYu, SSen_US
dc.contributor.authorWu, SJen_US
dc.contributor.authorLee, TTen_US
dc.date.accessioned2014-12-08T15:26:03Z-
dc.date.available2014-12-08T15:26:03Z-
dc.date.issued2003en_US
dc.identifier.isbn0-7803-7759-1en_US
dc.identifier.issn2159-6255en_US
dc.identifier.urihttp://hdl.handle.net/11536/18469-
dc.description.abstractIn this paper we apply a new approach, called optimal fizzy control based on linear TS type fuzzy model, to deal with nonlinear magnetic bearing systems. The linear TS type fuzzy model is used to represent the nonlinear plant To obtain the linear TS fuzzy model, we use linear self-constructing neural fuzzy inference network(linear SONFIN) to model the nonlinear system. Once the TS fuzzy model of the magnetic bearing system is obtained, the optimal fuzzy controller can be applied if the system is completely controllable and observable. Simulation results show that the proposed optimal fuzzy controller can operate in widely range of shaft position.en_US
dc.language.isoen_USen_US
dc.titleApplication of neural-fuzzy modeling and optimal fuzzy controller for nonlinear magnetic bearing systemsen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF THE 2003 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM 2003), VOLS 1 AND 2en_US
dc.citation.spage7en_US
dc.citation.epage11en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000185624100002-
Appears in Collections:Conferences Paper