Full metadata record
DC FieldValueLanguage
dc.contributor.authorKau, LJen_US
dc.contributor.authorLin, YPen_US
dc.date.accessioned2014-12-08T15:26:08Z-
dc.date.available2014-12-08T15:26:08Z-
dc.date.issued2003en_US
dc.identifier.isbn0-7803-7952-7en_US
dc.identifier.issn1062-922Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/18531-
dc.description.abstractIn this paper, we propose a switching adaptive predictor (SWAP) with automatic context modeling for lossless image coding. In the SWAP system, two predictors are used. For areas with edges, estimates of coding pixels are obtained using texture context matching (TCM). For all other areas, an adaptive neural predictor (ANP) is used. The SWAP encoder switches between the two predictors ANP and TCM depending on the neighborhood of the coding pixel. The switching predictor allows statistical redundancy to be removed effectively. On the other hand, it is known that prediction can be further refined using error compensation. For this, we propose the use of a modified fuzzy clustering, which leads to a modeling of errors that adapts itself to the input statistics. Experiments show that the proposed context clustering is very useful in modeling error for prediction refinement. Comparisons of the proposed system to existing state-of-the-art predictive coders will be given to demonstrate its coding efficiency.en_US
dc.language.isoen_USen_US
dc.subjectlossless image compressionen_US
dc.subjectcontext modelingen_US
dc.subjectadaptive predictionen_US
dc.subjectneural networken_US
dc.subjectfuzzy clusteringen_US
dc.titleA switching predictor for lossless image codingen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGSen_US
dc.citation.spage228en_US
dc.citation.epage233en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000186578600038-
Appears in Collections:Conferences Paper