完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, CHen_US
dc.contributor.authorLin, SYen_US
dc.contributor.authorCheng, MHen_US
dc.contributor.authorHorng, SCen_US
dc.contributor.authorLiu, CHen_US
dc.contributor.authorLee, WYen_US
dc.contributor.authorTsai, CHen_US
dc.date.accessioned2014-12-08T15:26:10Z-
dc.date.available2014-12-08T15:26:10Z-
dc.date.issued2003en_US
dc.identifier.isbn0-7803-7865-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/18557-
dc.description.abstractIn this paper, we propose a hierarchical fuzzy rule based classifier (HFRBC) for the classification problem with large number of classes and continuous attributes. A hierarchical clustering concept is introduced to achieve a finer fuzzy partition. Critical attributes are used to perform the cluster splitting and generate a cluster splitting tree. The effective attributes for the terminal clusters in the cluster splitting tree are picked so as to reduce the size of the fuzzy-rule set and hence reduce the computational complexity. The fuzzy rule generation procedures and classification procedures of the proposed HFRBC are simple and easily implemented. We have successfully applied the HFRBC to the classification problem of the working wafers in an ion implanter.en_US
dc.language.isoen_USen_US
dc.subjectfuzzy rulesen_US
dc.subjectclassificationen_US
dc.subjecthierarchical approachen_US
dc.subjection implanteren_US
dc.subjectfault detectionen_US
dc.titleAn effictive and efficient hierarchical fuzzy rule based classifieren_US
dc.typeProceedings Paperen_US
dc.identifier.journal2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGSen_US
dc.citation.spage2173en_US
dc.citation.epage2178en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000189420700433-
顯示於類別:會議論文