完整後設資料紀錄
DC 欄位語言
dc.contributor.authorAhmad, AMAen_US
dc.contributor.authorChen, DYen_US
dc.contributor.authorLee, SYen_US
dc.date.accessioned2014-12-08T15:26:14Z-
dc.date.available2014-12-08T15:26:14Z-
dc.date.issued2003en_US
dc.identifier.isbn0-7695-2031-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/18618-
dc.description.abstractIn this paper we propose a novel approach for Motion Vector (MV) based object detection in MPEG-2 video streams. Rather than processing the extracted MV fields that are directly extracted from MPEG-2 video streams in the compressed domain, we perform MV smoothing, perform MV noise reduction, obtain more robust object information, and refine this information through a cascaded filter composed of a Gaussian filter and a median filter. As a result, the object detection algorithm is more capable of accurately detecting objects. We compare the performance of our proposed system with the popular and commonly used spatial filter processing techniques: median filter, mean filter, Gaussian filter, and no filter. Based on experimental results performed over the MPEG7 testing dataset and measuring performance using the standard recall and precision metrics, object detection using the cascade filter is remarkably superior to the alternative filtering techniques. In addition to these results, we describe a user system interface that we developed, where users can maintain the filter parameters interactively.en_US
dc.language.isoen_USen_US
dc.subjectMPEG2en_US
dc.subjectfilteren_US
dc.subjectobject detectionen_US
dc.subjectmotion vectoren_US
dc.subjectGaussianen_US
dc.subjectmedianen_US
dc.subjectcascade filteren_US
dc.titleRobust object detection using cascade filter in MPEG videosen_US
dc.typeProceedings Paperen_US
dc.identifier.journalIEEE FIFTH INTERNATIOANL SYMPOSIUM ON MULTIMEDIA SOFTWARE ENGINEERING, PROCEEDINGSen_US
dc.citation.spage196en_US
dc.citation.epage203en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000188865700027-
顯示於類別:會議論文