Full metadata record
DC FieldValueLanguage
dc.contributor.authorPeng, WHen_US
dc.contributor.authorChiang, THen_US
dc.contributor.authorHang, HMen_US
dc.date.accessioned2014-12-08T15:26:16Z-
dc.date.available2014-12-08T15:26:16Z-
dc.date.issued2003en_US
dc.identifier.isbn0-7803-7946-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/18657-
dc.description.abstractWe proposed a context-based binary arithmetic coding to improve entropy coding of the enhancement layer for the H.26L-, based Fine Granularity Scalability (FGS). Instead of independent bit-plane coding, we exploit correlation between various bit-planes and neighboring coefficients. For each bit-plane, we perform significant/refinement bit partition and construct contexts separately in terms of energy clustering and distribution of DCT coefficients. For the significant bit, we extend one-dimensional run-length coding to multiple dimensions and segment the significant bit-planes. For the refinement bit, we put together refinement bits exhibiting stronger correlation by energy groups and apply run-length coding distinctively. Particularly, we introduce the maximum run concept to offer better statistical adaptation. Averagely, our approach reduces the enhancement-layer bit stream by 7similar to8% and improves the PSNR by 0.3similar to0.5dB. Moreover, our performance outperforms the JPEG-2000 for the encoding of the enhancement layer.en_US
dc.language.isoen_USen_US
dc.titleContext-based binary arithmetic coding for fine granuality scalabilityen_US
dc.typeProceedings Paperen_US
dc.identifier.journalSEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 1, PROCEEDINGSen_US
dc.citation.spage105en_US
dc.citation.epage108en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000189237900026-
Appears in Collections:Conferences Paper