完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, YCen_US
dc.contributor.authorWu, SJen_US
dc.contributor.authorLee, TTen_US
dc.date.accessioned2014-12-08T15:26:18Z-
dc.date.available2014-12-08T15:26:18Z-
dc.date.issued2003en_US
dc.identifier.isbn0-7803-7866-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/18691-
dc.description.abstractIn this paper, the electromagnetic suspension system is modeled as a neural-based linear T-S fuzzy system, and then the optimal fuzzy control design scheme is proposed to control the current and voltage-controlled system with minimum current and voltage consumption, respectively. The proposed linear self-constructing neural fuzzy inference network is a six layer neural network (linear SONFIN) modified from the well-known SONFIN network, which can construct a linear T-S fuzzy model of the system just by the input and output (I/O) information. Based on the linear T-S model, we can construct the optimal fuzzy control scheme to efficiently regulate the highly nonlinear, complex and uncertain electromagnetic suspension system to the equilibrium state.en_US
dc.language.isoen_USen_US
dc.titleMinimum-energy neural-fuzzy approach for current/voltage-controlled electromagnetic suspension systemen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2003 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION, VOLS I-III, PROCEEDINGSen_US
dc.citation.spage1405en_US
dc.citation.epage1410en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000185096600241-
顯示於類別:會議論文